Local Antimagic Coloring of Graphs

Prof. Slamin

Universitas Jember

Workshop KK Kombinatorika: Pewarnaan dan Pelabelan pada Graf Jurusan Matematika Universitas Andalas Padang, 25 April 2019

Overview

- 1. Local Antimagic Vertex Coloring
- 2. Local Antimagic Total Vertex Coloring
- 3. Super Local Antimagic Total Vertex Coloring
- 4. Local Antimagic Edge Coloring
- 5. Conclusion

Local Antimagic Vertex Coloring

Introduction

Definition [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

The local antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment $f: E \to \{1, 2, \cdots, |E|\}$ so that the weights of any two adjacent vertices u and v are distinct, that is, $w(u) \neq w(v)$ where $w(u) = \sum_{e \in E(u)} f(e)$ and E(u) is the set of edges incident to u.

- Any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u).
- The local antimagic chromatic number, denoted by $\chi_{la}(G)$, is the minimum number of colors taken over all colorings induced by local antimagic labelings of G.
- For any graph G, $\chi_{la}(G) \geq \chi(G)$ and the difference $\chi_{la}(G) \chi(G)$ can be arbitrarily large.

Example

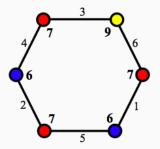


Figure 1: The local antimagic vertex coloring of C_6 with $\chi_{la}(C_6)=3$

Cycle

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For the **cycle** C_n on $n \ge 3$ vertices, $\chi_{la}(C_n) = 3$

Proof.

• Label the edges of C_n using the following formula.

$$f(v_i v_{i+1}) = \begin{cases} n - \frac{i-1}{2} & \text{if } i \text{ is odd} \\ \frac{i}{2} & \text{if } i \text{ is even} \end{cases}$$

• The weight of vertices are

$$w(v_i) = \begin{cases} n & \text{if } i \text{ is odd, } i \neq 1 \\ n+1 & \text{if } i \text{ is even} \\ 2n - \lfloor \frac{n}{2} \rfloor & \text{if } i = 1 \end{cases}$$

• Thus $\chi_{la}(C_n) \leq 3$.

6

Cycle (cont.)

Proof (cont.)

- Suppose n is even and there exists f that induces a 2-coloring of C_n .
- Let x be the color of v_i if i is odd and y if i is even.
- Then $\frac{n}{2}(x+y) = 2[\frac{n(n+1)}{2}]$ and hence x + y = 2n + 2.
- If $f(v_i v_{i+1}) = n$, then $w(v_i)$ and $w(v_{i+1})$ are at least n+1 and n+2.
- Thus $x + y \ge 2n + 3$, which is a contradiction.
- So $\chi_{la}(C_n) \geq 3$ if n is even.
- Further, $\chi(C_n) = 3$ if n is odd and hence $\chi_{la}(C_n) \geq 3$.
- Therefore $\chi_{la}(C_n) = 3$.

7

Tree

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For any tree T with l leaves, $\chi_{la}(T) \geq l + 1$.

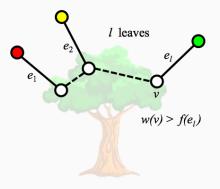


Figure 2: Tree with l leaves

Path

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For path P_n on $n \ge 3$ vertices, $\chi_{la}(P_n) = 3$.

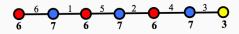


Figure 3: The local antimagic vertex coloring of P_7 with $\chi_{la}(P_7)=3$

Friendship graph

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For friendship graph F_n with $n \ge 2$, $\chi_{la}(F_n) = 3$.

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For friendship graph F_n with $n \ge 2$ by removing an edge e, $\chi_{la}(F_n - \{e\}) = 3$.

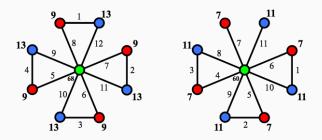


Figure 4: The local antimagic vertex coloring of F_4 and $F_4 - \{e\}$

Complete bipartite graph

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For complete bipartite graph $K_{m,n}$ with $m, n \geq 2$, $\chi_{la}(K_{m,n}) = 2$ if and only if $m \equiv n \pmod{2}$.

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For complete bipartite graph $K_{2,n}$ with $n \geq 2$, $\chi_{la}(K_{2,n}) = 2$ for even $n \geq 2$ and $\chi_{la}(K_{2,n}) = 3$ for odd $n \geq 3$ or n = 2.

Graph L_n

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

Graph L_n for $n \ge 2$ that is obtained by inserting a vertex to each edge vv_i , $1 \le i \le n-1$, of the star, $\chi_{la}(L_n) = n+1$.

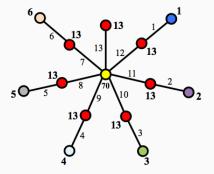


Figure 5: The local antimagic vertex coloring of L_7 with $\chi_{Ia}(L_7)=8$

Wheel

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

Wheel W_n of order n+1 for $n \geq 3$, $\chi_{la}(W_n) = 4$ if $n \equiv 1, 3 \pmod 4$, $\chi_{la}(W_n) = 3$ if $n \equiv 2 \pmod 4$, and $3 \leq \chi_{la}(W_n) \leq 5$ if $n \equiv 0 \pmod 4$.

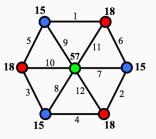


Figure 6: The local antimagic vertex coloring of W_6 with $\chi_{la}(W_6)=3$

Fan

Corollary

Fan f_n of order n+1 for $n \ge 6$ and $n \equiv 2 \pmod{4}$, $\chi_{la}(f_n) = 3$.

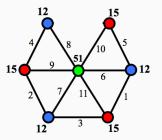


Figure 7: The local antimagic vertex coloring of f_6 with $\chi_{la}(f_6)=3$

Graph resulting from operation

Theorem [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

For the graph $H=G+\bar{K_2}$ where G is a graph of order $n\geq 4$, then

$$\chi_{la}(G) + 1 \le \chi_{la}(H) \le \begin{cases} \chi_{la}(G) + 1 & \text{for } n \text{ is even} \\ \chi_{la}(G) + 2 & \text{otherwise.} \end{cases}$$

Kite

Theorem [Nazula, S, Dafik (2018)]

For the kite $Kt_{n,m}$ with $n \ge 3$ and $m \ge 1$, $\chi_{Ia}(Kt_{n,m}) = 3$.

Proof.

• Label the edges of $Kt_{n,m}$ using the following formula.

$$f(u_{i}u_{i+1}) = \begin{cases} \frac{m+i}{2} & \text{if } m+i \text{ is even} \\ \frac{m+3-i}{2} + \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n-1}{2} \rfloor & \text{if } m+i \text{ is odd} \end{cases}$$

$$f(u_{n}u_{1}) = \begin{cases} \lfloor \frac{n}{2} \rfloor + \frac{m+1}{2} & \text{if } m \text{ is odd} \\ \lfloor \frac{n+1}{2} \rfloor + \frac{m}{2} & \text{if } m \text{ is even} \end{cases}$$

$$f(u_{1}v_{1}) = \begin{cases} \frac{m}{2} & \text{if } m \text{ is even} \\ \frac{m+1}{2} + n & \text{if } m \text{ is odd} \end{cases}$$

$$f(v_{j}v_{j+1}) = \begin{cases} \frac{m-j}{2} & \text{if } m+j \text{ is even} \\ \frac{m+j+1}{2} + n & \text{if } m+j \text{ is even} \end{cases}$$

Kite (cont.)

Proof (cont.)

• The weight of vertices are

$$w(u_i) = \begin{cases} \frac{3m}{2} + 2\lfloor \frac{n+1}{2} \rfloor + \lfloor \frac{n}{2} \rfloor & \text{if } m \text{ is even and } i = 1\\ n+m+1 & \text{if } m+i \text{ is even}\\ n+m & \text{if } m+i \text{ is odd}\\ \frac{3m+3}{2} + \lfloor \frac{n}{2} \rfloor + n & \text{if } m \text{ is odd and } i = 1 \end{cases}$$

$$w(v_i) = \begin{cases} n+m & \text{if } m+j \text{ is even}\\ n+m+1 & \text{if } m+j \text{ is odd} \end{cases}$$

- Thus $\chi_{la}(Kt_{n,m}) \leq 3$.
- The lower bound uses $\chi_{la}(C_n)$ due to Arumugam *et al.*
- Since $\chi_{la}(C_n)=3$ and the kite $Kt_{n,m}$ contains contains a subgraph that is isomorphic to the C_n , then $\chi_{la}(Kt_{n,m})\geq 3$.
- Therefore $\chi_{la}(Kt_{n,m}) = 3$.

Kite (cont.)

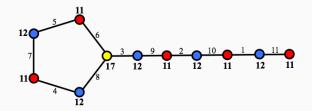


Figure 8: The local antimagic vertex coloring of $Kt_{5,6}$ with $\chi_{la}(Kt_{5,6})=3$

Cycle with two neighbour pendants

Theorem [Nazula, S, Dafik (2018)]

For cycle with two neighbour pendants Cp_n with $n \ge 3$, $\chi_{la}(Cp_n) = 4$.

Proof.

• Label the edges of Cp_n using the following formula.

$$f(u_iu_{i+1}) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd} \\ n+1-\frac{i}{2} & \text{if } i \text{ is even} \end{cases}$$

$$f(u_nu_1) = \lceil \frac{n+1}{2} \rceil$$

$$f(u_iv_i) = n+i & \text{if } i=1,2$$

The weight of vertices are

$$w(u_i) = \begin{cases} \lfloor \frac{3n+6}{2} \rfloor & \text{if } i = 1\\ 2n+3 & \text{if } i = 2\\ n+2 & \text{if } i \text{ is odd and } i \geq 3\\ n+1 & \text{if } i \text{ is even and } i \geq 4 \end{cases}$$

$$w(v_i) = n+i & \text{if } i = 1,2$$

Cycle with two neighbour pendants (cont.)

Proof (cont.)

- Thus $\chi_{Ia}(Cp_n) \leq 4$.
- To show the lower bound, we suppose that $f(u_1v_1) = m_1$ and $f(u_2v_2) = m_2$.
- Then $w(v_1) = m_1$, $w(v_2) = m_2$, $w(u_1) > m_1$ and $w(u_2) > m_2$
- Clearly, $w(v_1) \neq w(v_2)$.
- As u_1 is neighbour of u_2 , then $w(u_1) \neq w(u_2)$.
- This implies that $\chi_{la}(Cp_n) \geq 4$.
- We conclude that $\chi_{la}(Cp_n) = 4$.

Cycle with two neighbour pendants (cont.)

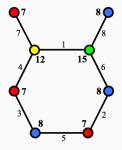


Figure 9: The local antimagic vertex coloring of Cp_6 with $\chi_{\mathit{la}}(\mathit{Cp}_6) = 4$

Corona Product of Graphs

Theorems [Arumugam, Lee, Premalatha, Wang (2018+)]

- $\chi_{la}(P_n \odot K_1) = n+2$ for $n \geq 4$.
- $\chi_{la}(P_n \odot \bar{K_m}) = mn + 2$ for $m \ge 2$ and $n \ge 2$.
- $\chi_{la}(C_n \odot K_1) = n+2$ for $n \geq 4$.
- $\chi_{la}(C_n \odot \bar{K_2}) = 2n + 2$ for $n \ge 4$.
- $\chi_{la}(C_3 \odot \bar{K}_2) = 3m + 3 \text{ for } m \ge 2.$
- $\chi_{la}(C_n \odot \bar{K_m}) = mn + 3$ for odd $n \ge 5$ except finitely many m?s.
- $\chi_{la}(K_n \odot K_1) = 2n 1 \text{ for } n \ge 3.$
- $\chi_{la}(K_n \odot \bar{K_m}) = mn + n \text{ for } m \geq 2 \text{ and } n \geq 3.$

Local Antimagic Total Vertex

Coloring

Local Antimagic Total Vertex Coloring

Definition [Putri, Dafik, Agustin, Alfarisi (2018)]

The local vertex antimagic total labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment $f:V\cup E\to \{1,2,\cdots,|V|+|E|\}$ so that the weights of any two adjacent vertices u and v are distinct, that is, $w(u)\neq w(v)$ where $w(u)=f(u)+\Sigma_{e\in E(u)}f(e)$ and E(u) is the set of edges incident to u.

- Any local vertex antimagic total labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u).
- The local antimagic total chromatic number, denoted by $\chi_{lat}(G)$, is the minimum number of colors taken over all colorings induced by local vertex antimagic total labelings of G.
- For any graph G, $\chi_{lat}(G) \geq \chi(G)$.

Example

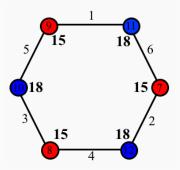


Figure 10: The local antimagic total vertex coloring of C_6 with $\chi_{lat}(C_6)=2$

Particular class of trees

Putri, Dafik, Agustin, Alfarisi (2018)

- For star S_n with $n \ge 2$, $\chi_{lat}(S_n) = 2$.
- For double star $S_{n,m}$ with $n \ge 2$ and $m \ge 2$, $\chi_{lat}(S_{n,m}) \le 3$.
- For banana tree $B_{m,n}$ with $n \ge 3$ and $m \ge 3$,

$$\chi_{lat}(B_{m,n}) \leq \begin{cases}
4, & \text{if } n \text{ odd, } m \text{ odd} \\
5, & \text{if } n \text{ odd, } m \text{ even} \\
6, & \text{if } n \text{ even, } m \text{ even}
\end{cases}$$

Wheel

Theorem [S, Dafik, Hasan (2018)]

For wheel W_n of order n+1,

$$\chi_{lat}(W_n) = \begin{cases}
3, & n \equiv 0 \pmod{2} \\
4, & n \equiv 1 \pmod{2}.
\end{cases}$$

Proof.

• Label all vertices and edges of W_n using the following formula.

$$\begin{split} f(x_i x_{i+1}) &= i, & \text{for } 1 \leq i \leq n-1 \\ f(x_n x_1) &= n \\ f(cx_i) &= 2n+1-i, & \text{for } 1 \leq i \leq n \\ f(x_i) &= \begin{cases} 2n+2, & \text{for } i=1 \\ 3n, & \text{for } i=2, n \text{ odd} \\ 3n-i+2-(-1)^{i+n}, & \text{untuk } 2 \leq i \leq n \end{cases} \\ f(c) &= 3n+1. \end{split}$$

Wheel (cont.)

Proof (cont.).

• The weight of the vertices are

$$w(x_i) = \begin{cases} 5n+1, & \text{for } (i+n) \text{ even} \\ 5n+2, & \text{for } i=2, n \text{ odd} \\ 5n+3, & \text{for } (i+n) \text{ odd or } i=1, n \text{ odd} \end{cases}$$
$$w(c) = \frac{n(3n+7)}{2} + 1.$$

- Thus $\chi_{lat}(W_n) \leq 3$ for n even and $\chi_{lat}(W_n) \leq 4$ for n odd.
- Since $\chi_{lat}(W_n) \ge \chi(W_n) = 3$ for n even and $\chi_{lat}(W_n) \ge \chi(W_n) = 4$ for n odd.
- Therefore, $\chi_{lat}(W_n) = 3$ for n even and $\chi_{lat}(W_n) = 4$ for n odd.

Wheel (cont.)

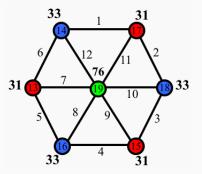


Figure 11: The local antimagic total vertex coloring of W_6 with $\chi_{lat}(W_6)=3$

Other wheel related graphs

Theorems [S, Dafik, Hasan (2018)]

- For fan F_n of order $n \ge 3$, $\chi_{lat}(f_n) = 3$
- For friendship graph f_n of order 2n + 1 with $n \ge 2$, $\chi_{lat}(f_n) = 3$

Broom

Theorem [Nikmah, S, Hobri (2018)]

For broom $B_{n,m}$ with $m \ge 3$ and $n - m \ge 2$, $\chi_{la}(B_{n,m}) = n - m + 2$

Theorem [Nikmah, S, Hobri (2018)]

For double broom $B_{n,m}$ with $m \ge 3$ and $n - m \ge 2$,

- 1. $\chi_{lat}(B_{n,m}) \leq 3$, and
- 2. $\chi_{lat}(B_{n,m}) = 3$, if $n > \frac{7 + 2m + \sqrt{48m 23}}{2}$.

Prism and Möbius ladder

Theorem [Hasan, S, Dafik (2018)]

For prism D_n of order 2n with $n \ge 3$,

$$\chi_{lat}(D_n) = \begin{cases} 2, & n \equiv 0 \pmod{2} \\ 3, & n \equiv 1 \pmod{2}. \end{cases}$$

Theorem [Hasan, S, Dafik (2018)]

For Möbius ladder M_{2n} of order 2n with $n \geq 3$,

$$\chi_{lat}(M_{2n}) = \begin{cases} 3, & n \equiv 0 \pmod{2} \\ 2, & n \equiv 1 \pmod{2}. \end{cases}$$

Super Local Antimagic Total Vertex Coloring

Super Local Antimagic Total Vertex Coloring

Definition

The super local vertex antimagic total labeling on a graph G with |V| vertices and |E| edges is defined as local vertex antimagic total labeling where the vertices of G receive the smallest labels, that is, 1, 2, ..., |V|.

- Any super local vertex antimagic total labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u).
- The super local antimagic total chromatic number, denoted by $\chi_{slat}(G)$, is the minimum number of colors taken over all colorings induced by super local vertex antimagic total labelings of G.
- For any graph G, $\chi_{slat}(G) \geq \chi_{lat}(G) \geq \chi(G)$.

Example

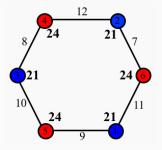


Figure 12: The super local antimagic total vertex coloring of C_6 with $\chi_{\mathit{slat}}(C_6) = 2$

Some results

Theorem [S, Dafik, Hasan (2018+)]

For cycle C_n of order $n \geq 3$,

$$\chi_{las}(C_n) = \begin{cases} 3, & \text{if } n \text{ is odd} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

Theorem [S, Dafik, Hasan (2018+)]

For path P_n of order $n \ge 4$, $3 \le \chi_{slat}(P_n) \le 4$,

Gear and Generalised Wheel

Theorem [S, Dafik, Hasan (2018+)]

For gear $J_{n,1}$ of order 2n+1 and odd $n \geq 5$, $\chi_{slat}(J_{n,1})=3$.

Theorem [S, Dafik, Hasan (2018+)]

For generalized wheel W_m^n of order mn+1 where $m \ge 1$ and $n \ge 3$,

$$\chi_{slat}(W_m^n) = \begin{cases}
3, & n \text{ even} \\
4, & n \text{ odd}
\end{cases}$$

Local Antimagic Edge Coloring

Local Antimagic Edge Coloring

Definition [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

The local edge antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment $f:V\to\{1,2,\cdots,|V|\}$ so that the weights of any adjacent edges, that is $\{w(uv):w(uv)=f(u)+f(v),uv\in E\}$, are distinct.

- Any local edge antimagic labeling induces a proper edge coloring of G where the edge uv is assigned the color w(uv).
- The local antimagic edge chromatic number, denoted by $\chi_{lea}(G)$, is the minimum number of colors taken over all colorings induced by local edge antimagic labelings of G.
- For any graph G, $\chi_{lae}(G) \geq \chi'(G)$.

Cycle

Theorem [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

For the **cycle** C_n on $n \ge 3$ vertices, $\chi_{lea}(C_n) = \chi_{la}(C_n) = 3$

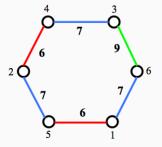


Figure 13: The local antimagic edge coloring of C_6 with $\chi_{lea}(C_6) = 3$

Path

Theorem [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

For the **path** P_n on $n \ge 2$ vertices, $\chi_{lea}(P_n) = 2$.

Figure 14: The local antimagic edge coloring of P_7 with $\chi_{lea}(P_7)=2$

Complete Graph

Theorem [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

For the **complete graph** K_n on $n \ge 3$ vertices, $\chi_{lea}(K_n) = 2n - 3$

Wheel related graphs [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

- Wheel W_n for $n \ge 3$, $\chi_{lea}(f_n) = n + 2$
- Fan graph f_n for $n \ge 3$, $\chi_{lea}(f_n) = n + 1$
- Gear graph $J_{n,1}$ for $n \geq 3$, $\chi_{lea}(J_{n,1}) = n + 2$
- Helm graph H_n for $n \ge 3$, $\chi_{lea}(H_n) = n + 3$
- Flower graph Fl_n for $n \ge 3$, $\chi_{lea}(Fl_n) = 2n + 1$
- Sun flower graph SFI_n for $n \ge 3$, $\chi_{lea}(SFI_n) = 2n 1$

Corona Product of Graphs

Theorem [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

For corona product of cycle C_n and m copy of K_1 where $n \geq 3$ and $m \geq 1$, $\chi_{lea}(C_n \odot mK_1) = m + 3$,

Theorem [Agustin, Hasan, Dafik, Alfarisi, Prihandini (2017)]

For corona product of any graph G of order $n \geq 3$ and m copy of K_1 where $m \geq 1$, $\chi_{lea}(G \odot mK_1) = \chi_{lea}(G) + m$,

Local Antimagic Total Edge Coloring

Definition [I.H. Agustin, Dafik, M. Hasan, 2017]

The local edge antimagic total labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment $f: V \cup E \to \{1, 2, \cdots, |V| + |E|\}$ so that the weights of any adjacent edges, that is $\{w(uv): w(uv) = f(u) + f(uv) + f(v), uv \in E\}$, are distinct.

- Any local edge antimagic total labeling induces a proper edge coloring of G where the edge uv is assigned the color w(uv).
- The local antimagic total edge chromatic number, denoted by $\chi_{leat}(G)$, is the minimum number of colors taken over all colorings induced by local edge antimagic total labelings of G.
- For any graph G, $\chi_{leat}(G) \geq \chi'(G)$.
- If the vertices of G receive the smallest labels, that is, 1, 2, ..., |V|, then the such labeling is called super local edge antimagic total labeling.
- Any super local edge antimagic total labeling also induces a proper edge coloring of G.

Conclusion

Summary of local antimagic labeling

labalina	Label		Weight		Local Antimagic	
Labeling	Vertex	Edge	Vertex	Edge	Chromatic Number	
Local Antimagic		х	х			
Local Antimagic Total	х	х	х		$\chi_{lat} \ge \chi_{slat} \ge \chi_{la} \ge \chi$	
Super Local Antimagic Total	x (min)	х	х			
Local Edge Antimagic		х		х		
Local Edge Antimagic Total	х	х		х	$\chi_{leat} \ge \chi_{sleat} \ge \chi_{lea} \ge \chi'$	
Super Local Edge Antimagic Total	x (min)	x		x		

Summary of known results on local antimagic labeling

Graphs	XIa	Xlat	Xslat	Xlea	Xleat	Xsleat
Cycle C_n , $n \ge 3$	3	3, if n is odd 2, if n is even	3, if n is odd 2, if n is even	3	3, if <i>n</i> is odd 2, if <i>n</i> is even	3, if n is odd 2, if n is even
Path P_n , $n \ge 3$	3	3	$3 \leq \chi \leq 4$	2	2, if n is odd 3, if n is even	?
Wheel W_n , $n \ge 3$	4, if $n=1,3 \pmod{4}$ 3, if $n=2 \pmod{4}$ $3 \le \chi \le 5$ if $n=0 \pmod{4}$	4, if <i>n</i> is odd 3, if <i>n</i> is even	4, if n is odd 3, if n is even	n + 2	n + 1	?
Fan F_n , $n \ge 3$	3	3	?	n+1	n+1	?
Friendship f_n , $n \ge 2$	3	3	3	2n + 1	2n + 1	?
Complete Bipartite Graph $K_{m,n}$, $m,n \ge 2$	$2 \longleftrightarrow m = n$ $\pmod{2}$ 2, if $m=2$, n even 3, if $m=2$, n odd	2	2	?	?	?
Complete Graph K_n , $n \ge 3$	n	n	n	2n - 3	?	?
Star $K_{1,n-1}$, $n \ge 3$	n	2	2	n - 1	?	?
Tree T with I leaves	$\geq l+1$	3, if <i>l=n-2</i>	3, if <i>l=n-2</i>	?	?	?
Kite $Kt_{n,m}$, $n \ge 3$, $m \ge 1$	3	?	?	?	3	3
Cycle with 2 pendants	4	?	?	?	?	?
Prism D_n , $n \ge 3$?	3, if <i>n</i> is odd 2, if <i>n</i> is even	?	5	?	?
Mobius Ladder M_{2n} , $n \ge 3$?	2, if <i>n</i> is odd 3, if <i>n</i> is even	?	?	?	?
Gear $J_{n,1}$ $n \ge 5$?	3	3	?	n+1	?

Note: refer to previous slides for the authors

Other graphs???

Open Problems

Open Problem 1

Determine the (super) local antimagic (total) (edge) chromatic number of other class of graphs G.

Open Problem 2 [Arumugam, Premalatha, Bača, Semaničová-Feňovčiková (2017)]

Characterize the class of graphs G for which $\chi_{la}(G) = \chi(G)$.

Open Problem 3

Characterize the class of graphs G for which $\chi_{lat}(G) = \chi(G)$, $\chi_{lea}(G) = \chi'(G)$, or $\chi_{leat}(G) = \chi'(G)$ and $\chi_{la}(G) = \chi_{lat}(G) = \chi_{slat}(G)$ or $\chi_{lea}(G) = \chi_{sleat}(G) = \chi_{sleat}(G)$.

Open Problem 4

How about local irregular labeling vertex or edge coloring?

THANK YOU